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Cátedra de Excelencia.

c© SISSA 2009 doi:10.1088/1126-6708/2009/09/120

mailto:bal@phy.syr.edu
mailto:ppadmana@syr.edu
http://arxiv.org/abs/hep-th/0907.2977
http://dx.doi.org/10.1088/1126-6708/2009/09/120


J
H
E
P
0
9
(
2
0
0
9
)
1
2
0

Contents

1 Introduction 1

2 The fuzzy sphere and its GW algebra 2

3 Ambiguities in the fuzzy spin 1

2
Dirac and Chirality operators 4

4 The Dirac and Chirality operators on S2 6

5 The fuzzy spin 1 Dirac operator 9

6 Generalizing to higher spins 11

7 Summary of rules for finding the fuzzy Dirac operator 15

8 Index theory for the spin j Dirac operator 16

9 Conclusions 18

1 Introduction

The Dirac and chirality operators are central for fundamental physics and also in non-

commutative geometry, where it is used to formulate metrical, differential geometric and

bundle-theoretic ideas following Connes’ approach [2].

The theory of these operators on the fuzzy sphere S2
F can be formulated using the

Ginsparg-Wilson(GW) algebra, or the approach of [3, 4]. The GW algebra was originally

encountered in the context of lattice gauge theories [5] where it was formulated in order to

avoid the fermion doubling problem. The fact that this algebra appears naturally in the

fuzzy case is interesting. In particular we shall see that it provides a way to formulate the

Dirac and chirality operators for any non-zero spin. The latter in turn leads to a Dirac-like

equation for any spin on S2 and R
2 with its associated chirality operator.

We shall hereafter refer to these Dirac-like equations and their chiralities just as Dirac

and chirality operators.

These Dirac and chirality operators remind one of the Duffin-Kemmer, Rarita-

Schwinger and Bargmann-Wigner equations. The relation between these well-known equa-

tions and those found in this paper remain to be explored.

In section 2, we establish our notation for S2
F and recall the earlier formulation of

the GW algebra and the fuzzy Dirac and chirality operators for spin 1
2 . In section 3, we

examine the ambiguities in the construction of the fuzzy spin 1
2 Dirac operator and study
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their continuum limits as well. When these limits exist, the resultant continuum operators

are unitarily equivalent.

Section 4 gives a procedure to construct these operators in the continuum. These will

act as a guide in taking the limit of their corresponding fuzzy versions, thereby fixing the

fuzzy Dirac and chirality operators. With this in mind, we explicitly construct the spin 1

Dirac and chirality operators in the continuum.

Then in section 5 we go on to construct the fuzzy versions of the spin 1 Dirac operator

by the construction of their GW algebras in such a manner that the continuum limits exist.

In section 6, guided by the analysis in section 5, the GW systems and hence their Dirac

and chirality operators are constructed for any spin in such a manner that their continuum

limits exist. Crucial observations of terms arising in such computations are made and the

procedure for taking their continuum limit is discussed in detail.

In section 7 we summarize our rules for finding the fuzzy Dirac and chirality operators.

We also prove a claim which unambiguously fixes the fuzzy Dirac and chirality operators

for all spins.

Instanton sectors can be formulated in the algebraic language in terms of projec-

tive modules [6]. There is a natural adaptation of this idea to S2
F for scalar and spin 1

2

fields [1, 7]. The index theory has also been established in the latter case. In section 8, we

generalize this construction to any spin and their Dirac and chirality operators on S2
F and

also establish their index theory.

In section 9 we present our conclusions.

2 The fuzzy sphere and its GW algebra

The algebra for the fuzzy sphere is characterized by a cut-off angular momentum L and is

the full matrix algebra Mat(2L + 1) ≡ M2L+1 of (2L + 1) × (2L + 1) matrices. They can

be generated by the (2L + 1)-dimensional irreducible representation (IRR) of SU(2) with

the standard angular momentum basis. The latter is represented by the angular momenta

LL
i acting on the left on Mat(2L + 1): If α ∈ Mat(2L + 1),

LL
i α = Liα (2.1)

[LL
i , LL

j ] = iǫijkL
L
k (2.2)

(LL
i )2 = L(L + 1)1 (2.3)

where Li are the standard angular momentum matrices for angular momentum L.

We can also define right angular momenta LR
i :

LR
i α = αLi, α ∈ M2L+1 (2.4)

[LR
i , LR

j ] = −iǫijkL
R
k (2.5)

(LR
i )2 = L(L + 1)1 . (2.6)

We also have

[LL
i , LR

j ] = 0. (2.7)

– 2 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
0

The operator Li = LL
i − LR

i is the fuzzy version of orbital angular momentum. They

satisfy the SU(2) angular momentum algebra

[Li,Lj] = iǫijkLk . (2.8)

In the continuum, S2 can be described by the unit vector x̂ ∈ S2, where x̂.x̂ = 1. Its

analogue on S2
F is

LL
i

L
or

LR
I

L
such that

lim
L→∞

L
L,R
i

L
= x̂i. (2.9)

This shows that L
L,R
i do not have continuum limits. But Li = LL

i −LR
i does and becomes

the orbital angular momentum as L → ∞:

lim
L→∞

LL
i − LR

i = −i(−→r ∧
−→
∇)i. (2.10)

The GW algebra. In algebraic terms, the GW algebra A is the unital ∗ algebra over C,

generated by two ∗-invariant involutions Γ,Γ′.

A = {Γ,Γ′ : Γ2 = Γ′2 = 1 ,Γ∗ = Γ ,Γ′∗ = Γ′} (2.11)

In any ∗ -representation on a Hilbert space, ∗ becomes the adjoint †.

Each representation of eq. (2.11) is a particular realization of the GW algebra. Rep-

resentations of interest in fuzzy physics are generally reducible.

The Dirac operator from GW algebra. Consider the following two elements con-

structed out of Γ,Γ′:

Γ1 =
1

2
(Γ + Γ′), (2.12)

Γ2 =
1

2
(Γ − Γ′). (2.13)

It follows from eq. (2.11) that {Γ1,Γ2} = 0. This suggests that for suitable choices of Γ,

Γ′, one of these operators may serve as the Dirac operator and the other as the chirality

operator provided they have the right continuum limits after suitable scaling. This is indeed

the case as we now show for the fuzzy spin 1
2 Dirac and chirality operators.

The fuzzy Dirac operator: Spin 1

2
. The construction is based on the GW algebra

of [8, 9]. First we note that if P is a projector, then,

P 2 = P (2.14)

and γ = 2P − 1 is an idempotent:

γ2 = 1. (2.15)

We now construct Γ, Γ′ from suitable projectors.

– 3 –
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Consider Mat(2L+ 1)⊗C
2. The spin 1

2 IRR of SU(2) acts on C
2. It has the standard

Lie algebra basis σi

2 , σi being the Pauli matrices. The projector coupling the left angular

momentum and this spin 1
2 to its maximum value L + 1

2 is

PL
L+ 1

2

=
~σ.~LL + L + 1

2L + 1
. (2.16)

Hence the corresponding idempotent is

ΓL
L+ 1

2

=
~σ.~LL + 1

2

L + 1
2

. (2.17)

The projector PR
L+ 1

2

coupling the right angular momentum and spin 1
2 to L+ 1

2 is obtained

by changing ~LL to −~LR in the above expression:

PR
L+ 1

2

=
−~σ.~LR + L + 1

2L + 1
. (2.18)

The minus sign is because of the minus sign in eq. (2.5).

The corresponding idempotent is

ΓR
L+ 1

2

=
−~σ.~LR + 1

2

L + 1
2

. (2.19)

Identifying ΓL,R

L+ 1

2

with Γ, Γ′, we get

Γ1 =
1

2

[

~σ. ~L + 1

L + 1
2

]

(2.20)

and

Γ2 =
1

2

[

~σ.(~LL + ~LR)

L + 1
2

]

. (2.21)

Now as L → ∞,

2LΓ1 → ~σ. ~L + 1 (2.22)

and

Γ2 → ~σ.x̂. (2.23)

These are the correct Dirac and chirality operators on S2 and so we can regard 2LΓ1 as

the fuzzy Dirac operator (upto a finite scaling) and Γ2 as its chirality operator.

3 Ambiguities in the fuzzy spin 1

2
Dirac and Chirality operators

Having looked at the construction of the spin 1
2 Dirac operator as given in [1], we now

consider other possibilities for constructing the same Dirac operator. This observation

turns out to be crucial in finding the Dirac operator for higher spins.
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The projectors P
L,R

L+ 1

2

are not the only projectors with rotational invariance. We can

also consider the two projectors to the L− 1
2 space, obtained by coupling the left and right

angular momenta L
L,R
i and spin 1

2 . These are,

PL
L− 1

2

= −

(

~σ.~LL − L

2L + 1

)

, (3.1)

and

PR
L− 1

2

= −

(

−~σ.~LR − L

2L + 1

)

. (3.2)

This gives us two new generators, ΓL,R

L− 1

2

, to the GW algebra. Thus there are a total of four

rotationally invariant idempotents which we list in the following table

P
L,R

L+ 1

2

: ΓL
L+ 1

2

ΓR
L+ 1

2

(3.3)

P
L,R

L− 1

2

: ΓL
L− 1

2

ΓR
L− 1

2

(3.4)

The negatives of these idempotents are also idempotents, but that is a trivial ambiguity.

Now a GW algebra is generated by any pair from this table. However if we adopt the

two left or the two right as Γ and Γ′, then Γ1 and Γ2 have no suitable continuum limit.

We can see this from choosing as our generators either ΓL
L± 1

2

or ΓR
L± 1

2

. We observe that

ΓL
L+ 1

2

= −ΓL
L− 1

2

and ΓR
L+ 1

2

= −ΓR
L− 1

2

, which as remarked above is a trivial ambiguity. So

clearly we cannot construct suitable GW algebras from such pairs of idempotents.

But if we now use the two operators ΓL
L+ 1

2

and ΓR
L− 1

2

and consider the combination

(L + 1
2 )(ΓL

L+ 1

2

− ΓR
L− 1

2

), we get the Dirac operator given in eq. (2.22). As we saw earlier

in section 2 [1], this Dirac operator is found by adding ΓL
L+ 1

2

and ΓR
L+ 1

2

and scaling as

L → ∞. The corresponding chirality operator is got from
ΓL

L+ 1
2

+ΓR

L−

1
2

2 as this goes to the

correct limit as L → ∞ which is σ.x̂. The other possibility of combining ΓL
L− 1

2

and ΓR
L+ 1

2

also exists and it is easy to see that −(L+ 1
2)(ΓL

L− 1

2

−ΓR
L+ 1

2

) also goes to the Dirac operator

given by eq. (2.22) while
ΓL

L−

1
2

+ΓR

L+1
2

2 goes to the corresponding chirality operator. This

exhausts all the possible combinations.

We again note here that we can only construct our desired Dirac and chirality operators

by choosing one Γ from the second column and one from the third column of eq. (3.3) and

eq. (3.4) as we will not get a differential operator in the continuum if we choose them from

the same column.

The fact that there exist all these possibilities for combining various generators of the

GW algebra for obtaining the fuzzy Dirac and chirality operators imply that we should take

care while writing the corresponding versions of higher spin Dirac and chirality operators as

not all of them may go to correct continuum limits. In the case of spin 1
2 , all the possibilities

go to the correct continuum limit, but as we shall soon see, this fails in the case of higher

spins. This calls for a rule to construct the fuzzy versions of these operators, which we
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shall formulate after studying the spin 1 case in detail. We shall also see later that this

becomes essential for finding the Dirac operators in the continuum for higher spins.

But there are more substantial ambiguities to consider. There are other operators in

the GW algebra which can serve as Dirac and chirality operators [1, 9]. For example there

are those which give the Dirac and chirality operators of the Watamuras [10] on SF
2 . As

shown in [9], in the continuum limit, the corresponding operators are unitarily equivalent

to eq. (2.22). We will not pursue such ambiguities further here.

In the next section we will see how to construct the Dirac operator and chirality

operator on S2 for spin 1
2 and spin 1.

4 The Dirac and Chirality operators on S2

We can construct a set of anti-commuting operators and call them the Dirac and chirality

operators after checking that they have the right properties. Consider

D = (Σi − γΣiγ)(Li + Σi) (4.1)

where γ satisfies γ2 = 1 and γ† = γ. ~Σ is the spin j representation of SU(2). It is easy to

check that this form of D in eq. (4.1) implies that

{D, γ} = 0 (4.2)

as γ commutes with the total angular momentum Ji = Li + Σi. This follows from the

following operator identity:

{A,BC} = {A,B}C − B[A,C] (4.3)

Thus D and γ are Dirac and chirality operators.

D and γ for the Spin 1

2
case. Let us now explicitly construct D and γ for the spin 1

2

case.

In the fuzzy case ~σ.~LL = L on the L + 1
2 space and ~σ.~LL = −(L + 1) on the L − 1

2

space. Thus taking their continuum limits gives us ~σ.x̂ = ±1 on these two spaces. An

alternative way to find the eigenvalues of ~σ.x̂ without taking continuum limits of the fuzzy

case is by noting that we can choose the direction of x̂ to be along the third direction,

which implies the eigenvalues of ~σ.x̂ are just the eigenvalues of σ3 namely ±1. This will be

used extensively when we generalize to higher spins.

Using ~σ.x̂, we can construct the projectors onto the two spaces with ~σ.x̂ = ±1:

P1 =
1 + ~σ.x̂

2
(4.4)

and

P−1 =
1 − ~σ.x̂

2
(4.5)

Now for any projector P , 1 − 2P is an idempotent:

(1 − 2P )2 = 1. (4.6)

– 6 –
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Thus from eq. (4.4) and eq. (4.5), we can read off the two chirality operators as ±~σ.x̂.

The Dirac operators corresponding to these two chirality operators are the same due

to the form of the Dirac operator given by eq. (4.1).

We can compute D using the algebra of the Pauli matrices. That gives us

σi − (~σ.x̂)σi(~σ.x̂) = σi − xi(~σ.x̂) (4.7)

and thus from eq. (4.1),

D = ~σ. ~L +
1

2
(4.8)

which is the well-known continuum Dirac operator for spin 1
2 on S2 [11]

D and γ on S2 for the spin 1 case. In a similar fashion we can find the chirality

operators in the continuum for the spin 1 case by noting that the eigenvalues of ~Σ.x̂ are ±1

and 0. We then write the projectors to the spaces where ~Σ.x̂ takes these three values and

by writing these projectors as 1+γ
2 we can read off the three chirality operators. They are

γ1 = 1 − 2(~Σ.x̂)2, (4.9)

γ2 = (~Σ.x̂)2 + (~Σ.x̂) − 1, (4.10)

γ3 = (~Σ.x̂)2 − (~Σ.x̂) − 1. (4.11)

The Dirac operator corresponding to eq. (4.9) is found to be

D1 = ~Σ. ~L − (~Σ.x̂)2 + 2. (4.12)

The ones corresponding to the other chirality operators are unitarily equivalent to this one.

The corresponding unitary operator transforms the eigenspace of ~Σx̂ with eigenvalue 0 to

either of the other eigenvalues. It is easy to write down the unitary operator connecting

these chiralities if we take x̂ to be in the third direction. If this is the case the three

chiralities become

γ1 =







−1 0 0

0 1 0

0 0 −1






, (4.13)

γ2 =







1 0 0

0 −1 0

0 0 −1






(4.14)

and

γ3 =







−1 0 0

0 −1 0

0 0 1






. (4.15)

The unitary matrix transforming eq. (4.13) to eq. (4.14) is

U =







0 −i 0

i 0 0

0 0 −1






. (4.16)

– 7 –
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We do not know how the general unitary transform between the three chiralities will

be. We suspect it to be an operator of the form eiD where D is the Dirac operator.

Our fuzzy Dirac and chirality operators will have these as their continuum limits.

The Dirac operator in eq. (4.12) is found using the algebra of the spin 1 matrices [12]

which is used to simplify

[Σi − (1 − 2(~Σ.x̂)2)Σi(1 − 2(~Σ.x̂))2](Li + Σi). (4.17)

We simplify the term in the square bracket after writing it in the form

[2Σi(~Σ.x̂)2 + (~Σ.x̂)2Σi − 4(~Σ.x̂)2Σi(~Σ.x̂)2]. (4.18)

The first two terms in the above expression can be simplified using

ΣiΣkΣj =
i

3
εikj +

1

2
(δikΣj + δkjΣi) + iεijmQkm (4.19)

where Qkm is a symmetric tensor. This identity gives the sum of the first two terms as

A + B = 2Σi + 2(~Σ.x̂)xi (4.20)

where A and B are the first two terms in eq. (4.18). The identity in eq. (4.19) can also be

used to simplify the third term in eq. (4.18) and we get

C = 2Σi(~Σ.x̂)2 + 2xi(~Σ.x̂) − 4iεikmQjm(~Σ.x̂)2xkxj. (4.21)

Using eq. (4.19), we can simplify this further to

C = 3xi(~Σ.x̂) + Σi + 2iεijmQkmxkxj − 4iεikmQjm(~Σ.x̂)2xkxj . (4.22)

To evaluate this, we need to simplify the last term in the expression. That can be done

using the following identities:

ΣlΣn =
2

3
δln +

i

2
εlnoΣo + Qln (4.23)

and

QjmQln =
1

6

(

δjlδmn + δjnδlm −
2

3
δjmδln

)

−
1

4

(

δjlQmn + δjnQlm + δmnQjl + δmlQjn −
4

3
δjmQln −

4

3
δlnQjm

)

+
i

8
(δjlεmnpΣp + δjnεmlpΣp + δmlεjnpΣp + δmnεjlpΣp).

(4.24)

On using these two identities, the last term in eq. (4.22) becomes

2iεikmQlmxkxl − xi(~Σ.x̂) + Σi (4.25)

This can then be substituted in eq. (4.22) to get

C = 4xi(~Σ.x̂). (4.26)

– 8 –
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With this, we obtain the following simple expression for A + B − C:

A + B − C = Σi − xi(~Σ.x̂) (4.27)

Multiplying this with ( ~Li + ~Σi) gives the Dirac operator in eq. (4.12).

Next we write down the Dirac operators corresponding to the other chirality operators.

The Dirac operators corresponding to eq. (4.10) and eq. (4.11) are found to be

D2 = (~Σ. ~L − (~Σ.x̂)2 + 2) + 2(~Σ.x̂) + {~Σ. ~L, ~Σ.x̂} (4.28)

and

D3 = (~Σ. ~L − (~Σ.x̂)2 + 2) − 2(~Σ.x̂) − {~Σ. ~L, ~Σ.x̂}. (4.29)

These are found using the algebra of spin 1 matrices [12] as before.

These are the continuum limits which guide us in finding the fuzzy spin 1 Dirac opera-

tors. This will be explained in the next section where we discuss in detail the construction

of the fuzzy spin 1 Dirac operator.

5 The fuzzy spin 1 Dirac operator

Consider Mat(2L + 1)
⊗

C
3, where Mat(2L + 1) is the carrier space of spin L ⊗ L rep-

resentation of SU(2) acting on left and right and C
3 is the carrier space of the spin 1

representation of SU(2). When a spin L couples with spin 1, we have three possible spaces

labeled by the values of the total angular momentum L + 1, L and L − 1. So we have six

projectors and as in eq. (3.3) and eq. (3.4) we can construct the corresponding generators

of the GW algebra. Thus we have a table similar to the one in eq. (3.3) and eq. (3.4):

P
L,R
L+1 : ΓL

L+1 ΓR
L+1 (5.1)

P
L,R
L : ΓL

L ΓR
L (5.2)

P
L,R
L−1 : ΓL

L−1 ΓR
L−1 (5.3)

The notation used here is similar to the one used in section 3.

The three projectors corresponding to the left angular momentum coupling to spin 1

are

PL
L+1 =

(~Σ.~LL + L + 1)(~Σ.~LL + 1)

(L + 1)(2L + 1)
(5.4)

PL
L = −

(~Σ.~LL − L)(~Σ.~LL + L + 1)

L(L + 1)
(5.5)

PL
L−1 =

(~Σ.~LL − L)(~Σ.~LL + 1)

(2L + 1)L
(5.6)

while the corresponding right projectors are obtained from above by substituting ~LL by

−~LR.

Writing each projector as 1+Γ
2 and ~L as ~LL or −~LR, we can find the generators of the

GW algebra for each of the projectors above. Let us write down the relevant generators

– 9 –
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whose combinations give the fuzzy Dirac and chirality operators having the right continuum

limits which we found in the previous section.

ΓL
L+1 =

2(~Σ.~LL + L + 1)(~Σ.~LL + 1) − (L + 1)(2L + 1)

(L + 1)(2L + 1)
(5.7)

ΓR
L+1 =

2(−~Σ.~LR + L + 1)(−~Σ.~LR + 1) − (L + 1)(2L + 1)

(L + 1)(2L + 1)
(5.8)

ΓL
L−1 =

2(~Σ.~LL − L)(~Σ.~LL + 1) − L(2L + 1)

L(2L + 1)
(5.9)

ΓR
L−1 =

2(~Σ.~LR + L)(~Σ.~LR − 1) − L(2L + 1)

L(2L + 1)
(5.10)

We can immediately see that
ΓL

L−1
±ΓR

L+1

2 , are chirality and Dirac operators (the latter upto

an overall constant) for the fuzzy sphere by checking their continuum limits. Thus as

L → ∞,
ΓL

L−1 + ΓR
L+1

2
→ (~Σ.x̂)2 − ~Σ.x̂ − 1, (5.11)

which is a chirality operator for the spin 1 case in the continuum which we encountered in

the previous section. Also

lim
L→∞

L

(

ΓL
L−1 − ΓR

L+1

2

)

= −(~Σ. ~L − (~Σ.x̂)2 + 2) (5.12)

is the corresponding Dirac operator as L(
ΓL

L−1
−ΓR

L+1

2 ) anti-commutes with
ΓL

L−1
+ΓR

L+1

2 . The

Dirac operator got from the fuzzy case in eq. (5.12)is unitarily equivalent to the one got in

eq. (4.28). This can be seen as a consequence of the fact that the chiralities corresponding

to these Dirac operators are unitarily equivalent. Eq. (5.12) can be seen by substituting

the expressions for ΓL
L−1 and ΓR

L+1 from eq. (5.9) and eq. (5.8) respectively and grouping

terms similar in the order of ~LL and ~LR.

Here we note the order L term in the expression

L
((~Σ.~LL)2 − (~Σ.~LR)2)

(L + 1)(2L + 1)
(5.13)

got by grouping the second order terms. As L → ∞ this term goes to − (~Σ.x̂)
2 . This can

be understood easily by noting that [LL
i , LL

j ] = iεijkL
L
k , produces first order terms in L

and these commutators arise when we expand LL
i LL

j as a sum of a commutator and an

anticommutator. However, this is just the highest order term and this limit is not exact.

We shall in fact see later that the exact limit is different from this involving a first order

differential term thereby changing the form of the Dirac operator. But we will show it to

be unitarily equivalent to the above Dirac operator.

Similarly we find the chirality and Dirac operators
ΓL

L+1
+ΓR

L−1

2 for the fuzzy sphere(the

latter upto a constant) and their continuum limits.

ΓL
L+1 + ΓR

L−1

2
→ (~Σ.x̂)2 + ~Σ.x̂ − 1 (5.14)
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and

L

(

ΓL
L+1 − ΓR

L−1

2

)

→ (~Σ. ~L − (~Σ.x̂)2 + 2) (5.15)

as L → ∞. The Dirac operator got from the fuzzy case in eq. (5.12)is unitarily equivalent

to the one got in eq. (4.29). Again this can be seen as a consequence of the fact that the

chiralities corresponding to these Dirac operators are unitarily equivalent. We will remark

more about this later.

We can also see that γ1 in eq. (4.9) is got by taking the continuum limit of

ΓL
L + ΓR

L

2
(5.16)

where

ΓL
L =

−2(~Σ.~LL − L)(~Σ.~LL + L + 1) − L(L + 1)

L(L + 1)
(5.17)

ΓR
L =

2(~Σ.~LR + L)(−~Σ.~LR + L + 1) − L(L + 1)

L(L + 1)
(5.18)

This implies L(
ΓL

L
−ΓR

L

2 ) goes to the corresponding Dirac operator. Thus
ΓL

L
+ΓR

L

2 and constant

times
ΓL

L
−ΓR

L

2 can also serve as chirality and Dirac operators.

The continuum limit of the combination ΓR
L + ΓL

L+1 goes to ~Σ.x̂ − (~Σ.x̂)2 which is not

part of the chiralities we obtained in the continuum in section 4. They are not unitarily to

equivalent to any of those obtained in section 4 either. Other combinations like ΓR
L+ΓL

L−1 go

to a chirality we do not have in the continuum as formulated in section 4. The combinations

anticommuting with these namely L(ΓR
L − ΓL

L+1) and L(ΓR
L + ΓL

L−1) do not have proper

continuum limits, in fact they diverge. Hence we discard these combinations.

6 Generalizing to higher spins

The projectors to spaces, got by coupling L to higher spins contain more factors increasing

the order in ~LL,R and making the expressions look complicated. We observe the kind of

terms that can emerge from simplifying these expressions and formulate rules to take their

continuum limits.

We first carefully look at the spin 3
2 case and use this to generalize to terms emerging

from higher spins. We have eight projectors in this case which are P
L,R

L+ 3

2

, P
L,R

L+ 1

2

, P
L,R

L− 1

2

,

P
L,R

L− 3

2

. We can construct the generators of the GW algebra from each of these projectors

and thus construct a table similar to that shown in eqs. (5.1)–(5.3). From this table, let

us take the relevant Γ operators whose combination gives us the fuzzy Dirac operator.

Consider

ΓL
L+ 3

2

=
(2~Σ.~LL − L + 3)(2~Σ.~LL + L + 4)(2~Σ.~LL + 3L + 3) − 6(L + 1)(2L + 3)(2L + 1)

6(L + 1)(2L + 1)(2L + 3)
(6.1)

ΓR
L− 3

2

=
(−2~Σ.~LR − L + 3)(−2~Σ.~LR + L + 4)(2~Σ.~LR + 3L) − 6L(2L − 1)(2L + 1)

6L(2L + 1)(2L − 1)
(6.2)
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Now as L → ∞,

ΓL
L+ 3

2

+ ΓR
L− 3

2

→
8(~Σ.x̂)3 − 2~Σ.x̂ + 12(~Σ.x̂)2 − 27

24
(6.3)

The Dirac operator corresponding to this can be got from taking the continuum limit of

L(ΓL
L+ 3

2

−ΓR
L− 3

2

). We will look at the possible terms we will be coming across in the process

of taking the limits of the Dirac operators. In the case of spin 3
2 , we see the following term:

L

(

(~Σ.~LL)3 − (~Σ.~LR)3

L3

)

(6.4)

There is also a constant factor multiplying this. However this is not important for us right

now as we are formulating rules for taking continuum limits of such terms.

Let us see how to take this continuum limit. For this consider

(~Σ.~LL)3

L2
=

1

L2
(~Σ. ~L + ~Σ.~LR)3 (6.5)

=
1

L2

[

(~Σ. ~L)3 + (~Σ.~LR)2(~Σ. ~L) + {~Σ. ~L, ~Σ.~LR}~Σ. ~L + (~Σ. ~L)2~Σ.~LR + (~Σ.~LR)3

+{~Σ. ~L, ~Σ.~LR}~Σ.~LR
]

. (6.6)

Here we have written ~LL = ~L + ~LR where ~L is the first order differential operator in the

continuum. In the previous equation we note that the (~Σ.~LR)3 term cancels the −(~Σ.~LR)3

in equation eq. (6.4). When L → ∞, the order 1 terms in ~LR go away. The (~Σ. ~L)3 also

goes away in the continuum as we take the limit. So we are left with the following terms

that have a non-zero limit

(~Σ.~LL)3

L2
=

1

L2

[

{~Σ. ~L, (~Σ.~LR)2} + (~Σ.~LR)(~Σ. ~L)(~Σ.~LR)
]

. (6.7)

This is the following self-adjoint operator in the continuum:

{~Σ. ~L, (~Σ.x̂)2} + (~Σ.x̂)(~Σ. ~L)(~Σ.x̂). (6.8)

The other terms we find in the expression for the fuzzy Dirac operator for the spin 3
2

case involve powers of ~LL and ~LR less than 3 and their continuum limits were already found

while we evaluated the corresponding continuum limits in the spin 1 and the spin 1
2 case.

At this point we make a crucial observation that the limits we are taking are all

independent of the algebra of the spin matrices ~Σ. This is the reason why we need not

bother about the order 1 and 2 terms in the spin 3
2 case, though the spin matrices ~Σ are

different from those in the spin 1 case.

We are interested in finding the limits of expressions of the form eq. (6.4), which are

similar in the case of all spins, but with higher powers of ~LL and ~LR.

Consider first

(~Σ.~LL)4 − (~Σ.~LR)4

L3
=

1

L3

(

(~Σ.( ~L + ~LR))4 − (~Σ.~LR)4
)

(6.9)

=
1

L3

(

[(~Σ. ~L)2 + (~Σ.~LR)2 + {~Σ.~LR, ~Σ. ~L}][(~Σ. ~L)2 + (~Σ.~LR)2

+{~Σ.~LR, ~Σ. ~L}] − (~Σ.~LR)4
)

(6.10)
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In the above expression, only the order 3 terms in LR have a non-zero continuum limit.

The (~Σ.~LR)4 term cancels just as it did in expression eq. (6.4). The terms with non-zero

limit are
1

L3
[{~Σ.~LR, ~Σ. ~L}(~Σ.~LR)2 + (~Σ.~LR)2{~Σ.~LR, ~Σ. ~L}] (6.11)

As L → ∞ this term goes to the following non zero, self-adjoint expression

{~Σ. ~L, (~Σ.x̂)3} + {~Σ. ~L, ~Σ.x̂(~Σ. ~L)~Σx̂} (6.12)

Looking at this pattern and using the fact that we are just applying the binomial

expansion in this computation, we can write a general rule for computing the continuum

limit for order n terms. For this we consider

1

Ln−1
[(~Σ.~LL)n − (~Σ.~LR)n] (6.13)

Again we write ~LL = ~L + ~LR and expand (~Σ.~LL)n using the binomial expansion. As in

previous cases the (~Σ.~LR)n term gets canceled and we need to pick only the order n − 1

terms in ~LR as these are the only terms having a non-zero continuum limit. Since the

continuum operator has to be self-adjoint and the terms occurring in the expansion are all

those occurring in a binomial expansion, it is easy to see that the terms having a non-zero

limit can be given as the following sum:

1

Ln−1

(

n−1
∑

k=0

(~Σ.~LR)n−1−k(~Σ. ~L)(~Σ.~LR)k

)

(6.14)

It is clear from this expression that we only have terms of order n − 1 in ~LR here and we

immediately see the continuum limit of this expression as

n−1
∑

k=0

(~Σ.x̂)n−1−k(~Σ. ~L)(~Σ.x̂)k. (6.15)

Thus when considering the expression for the Dirac operator for any spin j, the highest

order term in ~Σ.~LL has a power n = 2j and other terms decrease from 2j to 1. We have

just seen how to take the continuum limit of each of these terms with our general rules.

We also encounter polynomials in L in these expressions whose limits are easy to take.

Apart from grouping terms of similar order as in eq. (6.4), we will also encounter ~Σ.~LL,R

of various orders which cannot be grouped as in eq. (6.4). The process of taking limits for

such terms is straightforward and we will not elaborate them here.

Verifying for spin 1

2
. We see that the highest order term is n = 1 and so the Dirac

operator in the continuum consists of just ~Σ. ~L. Then we have a polynomial in ~LL,R in the

next order whose limit combined with the limit of the first order term gives ~Σ. ~L + 1 as

before, where ~Σ = ~σ
2 .
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Verifying for spin 1. For spin 1, we have n = 2 as the highest order term and this gives

the term {~Σ.x̂, ~Σ. ~L} according to our general rule. We should then look at the n = 1 term

which gives a term proportional to ~Σ. ~L. By taking the continuum limit of L(
ΓL

L−1
−ΓR

L+1

2 )

according to the rules from the previous section, we get

D′ =
{~Σ. ~L, ~Σ.x̂}

2
−

(

~Σ. ~L

2
−

(~Σ.x̂)2

2
+ 1

)

+ ~Σ.x̂. (6.16)

This operator is −1
2 times the Dirac operator got in eq. (4.29). The constant factor of −1

2

can be absorbed in the scale factor multiplying the fuzzy Dirac operator. In a similar way

the other continuum Dirac operators can be got by taking the limits of the correct fuzzy

versions.

This verifies the rules we formulated for the know cases of spin 1 and spin 1
2 .

Showing unitary equivalences. We speculate that D′ is unitarily equivalent to the

Dirac operator D we got in eq. (4.12). We are not however able to exactly prove it. The

basis of our speculation is the unitary equivalence of the Dirac operators of [3] and [10]

proved in [9]. Following that approach we consider the following unitary transformation

by the unitary operator generated by the chirality operator γ:

D′ = {exp iθγ}D {exp−iθγ} (6.17)

It follows from γ2 = 1 and {D, γ} = 0, that the previous equation can be written as

D′ = {exp 2iθγ}D (6.18)

which is

D′ = cos 2θD + i sin 2θγD. (6.19)

Substituting for γ from eq. (4.10) or eq. (4.11) we calculate the second term in eq. (6.19)

to check the equivalence. We get

γD =
[

(~Σ.x̂)2 − ~Σ.x̂
]

~Σ. ~L + (~Σ.x̂)2 − ~Σ.x̂ − D. (6.20)

Most of the terms in eq. (6.16) are seen in the above expression except (~Σ.x̂)2~Σ. ~L. This

term can be simplified using eq. (4.19) to get:

(~Σ.x̂)2~Σ. ~L =
1

2
~Σ. ~L + iǫijmQkmx̂kx̂iLj . (6.21)

Unitary equivalence will consist in picking θ so that eq. (6.19) becomes eq. (6.16).

Unfortunately we see terms of the form (~Σ.x̂)2~Σ. ~L in eq. (6.19) which are not present in

eq. (6.16). Perhaps we must make an additional unitary transformation with a unitary

operator commuting with γ. We do not know what such an operator can be.

We can construct more Dirac operators in the continuum starting from the one given in

eq. (4.1). We do this by first observing that all choices of γ in the continuum depend only
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on ~Σ.x̂. Hence if P is a function of a variable η with a convergent power series expansion

in η, then

DP = {P (~Σ.x̂)(Σi − γΣiγ) + (Σi − γΣiγ)P (~Σ.x̂)†}(Li + Σi) (6.22)

is also self-adjoint, anti-commutes with γ and is hence also a Dirac operator.

It is not clear if different choices of P lead to unitarily equivalent Dirac operators

(after an overall scaling) or not. A definitive answer to such questions can be obtained by

calculating the spectrum of these operators. Since we are not able to do so analytically,

we are now doing so numerically [13].

7 Summary of rules for finding the fuzzy Dirac operator

Half-integral spins. In this case, we have an even number of projectors and hence an

even number of chiralities in the continuum. We can easily find all the chiralities in the

continuum as they are just got from constructing projectors to various spaces labeled by

the eigenvalues of ~Σ.x̂.

Next we list the projectors in the fuzzy case and construct the corresponding GW

systems for each of them. So we have tables similar to the ones in eqs. (5.1)–(5.3). Then

we consider the construction of the correct combination of the generators of the various

GW systems, which go to the chiralities found in the continuum previously, as we take the

continuum limit.

The claim is: The chiralities got from the projectors to the spaces labeled by j and −j

in the continuum are got by taking the continuum limits of

ΓL
L+j + ΓR

L−j

2
(7.1)

and
ΓL

L−j + ΓR
L+j

2
(7.2)

respectively.

We now prove this claim:

Consider spin j coupling to the orbital part l. Then if we project to the l+ j−k space,

it is easy to see that

Spectrum of ~Σ.~LL ∈ lj +
k

2
[k − 1 − 2l − 2j] (7.3)

where k = 0, 1, ..., 2j. We use this spectrum to construct the projectors to the above spaces.

It then follows from definition that

ΓL
l+j + ΓR

l−j

2
= PL

l+j + PR
l−j − 1 (7.4)

where PL,R denotes the left or right projector to the corresponding space, indicated in the

suffix. Taking the continuum limit, we get

lim
l→∞

PL
l+j + PR

l−j − 1 =

2j
∏

k=1

(~Σ.x̂ − j + k)

k
+

2j−1
∏

k=0

(−~Σ.x̂ − j + k)

(−2j + k)
− 1. (7.5)
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Pulling out the minus signs in the second expression we get

lim
l→∞

PL
l+j + PR

l−j − 1 =

∏2j
k=1(

~Σ.x̂ − j + k)

(2j)!
+ (−1)4j

∏2j−1
k=0 (~Σ.x̂ + j − k)

(2j)!
− 1. (7.6)

Since 4j is even for both integral and half-integral j, observing that
∏2j

k=1
~Σ.x̂ − (j − k) =

∏2j−1
k=0

~Σ.x̂ + (j − k), we get

lim
l→∞

ΓL
l+j + ΓR

l−j

2
= 2

∏2j
k=1(

~Σ.x̂ − j + k)

(2j)!
− 1. (7.7)

This is exactly the expression for the chirality operator got in the continuum from the

projector to the space where ~Σ.x̂ = j.

Now since, L

(

ΓL
L+j−ΓR

L−j

2

)

and
ΓL

L+j+ΓR
L−j

2 anticommute in the fuzzy case, they will

continue to do so as we take the continuum limit. So we can be sure that

L

(

ΓL
L+j − ΓR

L−j

2

)

(7.8)

gives us the fuzzy Dirac operator corresponding to this chirality.

We can follow the same procedure to get the remaining fuzzy Dirac and chirality

operators, exhausting all possibilities.

Integral spins. In this case, we have an odd number of projectors and hence an odd

number of chiralities in the continuum. We then proceed as we did for the case of half-

integral spins and we note that all the arguments go through, except when it comes to

the Dirac operator corresponding to the chirality obtained from the projector to the space

where ~Σ.x̂ = 0. In this case, we construct the fuzzy analogues from the generators of the

GW system obtained from the left and right projectors to the L+0 space alone. We cannot

mix the generators of the GW system got from this projector with the generators obtained

from the projectors to other spaces as we get diverging continuum limits. We omit the

simple details for showing this result.

8 Index theory for the spin j Dirac operator

The index of the Dirac operator can be computed by counting the number of zero modes.

These zero modes are eigenstates of the Dirac operator spanning a subspace left invariant

by the chirality operator. Thus if chirality is diagonalised in this subspace of zero modes

and the dimensions of the zero mode subspaces with γ = ±1 are nL,R, the index of the

Dirac operator is nL −nR. There will be a minimum of nL −nR linearly independent zero

modes of the Dirac operator with γ = 1(γ = −1), if nL ≥ nR (nL ≤ nR), respectively.

We can compute the index as follows [1, 14]. Consider the instanton sectors of S2,

which correspond to U(1) bundles thereon. On S2
F , projective modules substitute for

sections of bundles.

We build the projective modules on S2
F by introducing a spin T representation of SU(2)

whose carrier space is C
2T+1. We then consider, Mat(2L + 1) ⊗ C

2T+1, on which SU(2)
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~LL + ~T − ~LR ~Σ ~J

0 + T → −1
2 → T − 1

2

0 + T → 1
2 → T + 1

2

1 + T → −1
2 → T + 1

2

1 + T → 1
2 → T + 3

2

2 + T → −1
2 → T + 3

2
...

...
...

2L + T − 1 → 1
2 → 2L + T − 1

2

2L + T → −1
2 → 2L + T − 1

2

2L + T → +1
2 → 2L + T + 1

2

Table 1. Method to find unpaired eigenstates.

acts with generators ~LL + ~T . Then we consider, Mat(2L + 1) ⊗ C
2T+1 ⊗ C

2j+1, the space

where the fuzzy spin j Dirac operator with instanton coupling acts. The desired projective

modules are then constructed by considering PL±T Mat(2L + 1) ⊗ C
2T+1 ⊗ C

2j+1, where

PL±T is the projector to the space where ~LL+ ~T couple to L+T and L−T respectively. The

different projectors obtaining by varying T as well correspond to different Chern numbers

which classify the projective modules in the continuum and in the fuzzy case. Using these

projectors we can construct their corresponding GW systems and hence the fuzzy Dirac

operators with instanton coupling. We do not explicitly show the construction of the

projective modules for a general spin j here. For details regarding spin 1
2 , see [1].

Next we find the unpaired eigenstates obtained by combining the four angular mo-

menta, namely ~LL, ~T ,−~LR, ~Σ, to get the total angular momentum ~J . Unpaired eigenstates

are those whose eigenvalues are got by combining the four angular momenta in a unique

way. These are eigenstates of the total angular momentum ~J . These are also eigenstates

of the Dirac operator as ~J commutes with the Dirac operator. The method of counting the

number of unpaired eigenstates is illustrated in table 1, where we have considered the case

where ~Σ = 1
2 . We note that the states with total angular momentum T − 1

2 and 2L+T + 1
2

are the unpaired ones as they occur just once in table 1. The latter is the top mode and we

can discard it as it does not agree with the values obtained in the continuum [15], (see page

95, chapter 8 of [1]). We are then left with the space whose value of total angular momen-

tum is T − 1
2 and the dimension of this space is 2T . This is the number of zero modes of the

Dirac operator and hence its index. This space is left invariant by the chirality operator.

This procedure can be carried out for any spin j. When we do this, we find that the

only unpaired eigenstate, discarding the top mode, is the one with the eigenvalue T − j.

This is also the minimum value of the total angular momentum. This gives us 2(T − j)+1

as the number of zero modes and this is the index of these Dirac operators.

We can verify for the familiar [1] spin 1
2 case that this gives 2T . For the case of spin 1,

this gives 2T − 1.
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9 Conclusions

We have seen that we can construct Dirac operators for any spin on the fuzzy 2-sphere. We

made use of the properties of the projectors to various spaces to achieve this construction

and by formulating rules to take their continuum limits we found these operators on the

commutative 2-sphere as well. A general construction of the Dirac and chirality operators

on the continuum 2-sphere was shown.

Formulating the gauge sectors of these operators in the fuzzy case [1] and taking their

continuum limits, we can also get equations with interactions on S2 and S2
F .

We can construct the Dirac and chirality operators on R
2. We did not show this

construction here as it is quite straight forward and can be done using our general methods

for constructing them. Moreover we did not obtain any new result by considering them.

We are examining the spectrum of these Dirac operators on S2 and S2
F . We could not

find them analytically and so we are trying to do it numerically [13]. We are also studying

quantum field theories associated with these operators by functional integral techniques.
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